Molecular Dynamics Simulations of DNA-Free and DNA-Bound TAL Effectors
نویسندگان
چکیده
TAL (transcriptional activator-like) effectors (TALEs) are DNA-binding proteins, containing a modular central domain that recognizes specific DNA sequences. Recently, the crystallographic studies of TALEs revealed the structure of DNA-recognition domain. In this article, molecular dynamics (MD) simulations are employed to study two crystal structures of an 11.5-repeat TALE, in the presence and absence of DNA, respectively. The simulated results indicate that the specific binding of RVDs (repeat-variable diresidues) with DNA leads to the markedly reduced fluctuations of tandem repeats, especially at the two ends. In the DNA-bound TALE system, the base-specific interaction is formed mainly by the residue at position 13 within a TAL repeat. Tandem repeats with weak RVDs are unfavorable for the TALE-DNA binding. These observations are consistent with experimental studies. By using principal component analysis (PCA), the dominant motions are open-close movements between the two ends of the superhelical structure in both DNA-free and DNA-bound TALE systems. The open-close movements are found to be critical for the recognition and binding of TALE-DNA based on the analysis of free energy landscape (FEL). The conformational analysis of DNA indicates that the 5' end of DNA target sequence has more remarkable structural deformability than the other sites. Meanwhile, the conformational change of DNA is likely associated with the specific interaction of TALE-DNA. We further suggest that the arrangement of N-terminal repeats with strong RVDs may help in the design of efficient TALEs. This study provides some new insights into the understanding of the TALE-DNA recognition mechanism.
منابع مشابه
Potential Role of the Last Half Repeat in TAL Effectors Revealed by a Molecular Simulation Study
TAL effectors (TALEs) contain a modular DNA-binding domain that is composed of tandem repeats. In all naturally occurring TALEs, the end of tandem repeats is invariantly a truncated half repeat. To investigate the potential role of the last half repeat in TALEs, we performed comparative molecular dynamics simulations for the crystal structure of DNA-bound TALE AvrBs3 lacking the last half repea...
متن کاملStructural basis for sequence-specific recognition of DNA by TAL effectors.
TAL (transcription activator-like) effectors, secreted by phytopathogenic bacteria, recognize host DNA sequences through a central domain of tandem repeats. Each repeat comprises 33 to 35 conserved amino acids and targets a specific base pair by using two hypervariable residues [known as repeat variable diresidues (RVDs)] at positions 12 and 13. Here, we report the crystal structures of an 11.5...
متن کاملTAL Effectors Specificity Stems from Negative Discrimination
Transcription Activator-Like (TAL) effectors are DNA-binding proteins secreted by phytopathogenic bacteria that interfere with native cellular functions by binding to plant DNA promoters. The key element of their architecture is a domain of tandem-repeats with almost identical sequences. Most of the polymorphism is located at two consecutive amino acids termed Repeat Variable Diresidue (RVD). T...
متن کاملTAL effectors from Xanthomonas: design of a programmable DNA-binding specificity
Xanthomonas spp. are Gram-negative bacteria with powerful molecular weapons to attack their plant hosts. Key for pathogenicity of Xanthomonas is a type III secretion system that injects a cocktail of effector proteins into plant cells to function as potent virulence factors. TAL (transcription activator-like) effectors from Xanthomonas function as transcriptional activators of plant genes in th...
متن کاملDifferential Dynamics of the Levels of Low Molecular Weight DNA Fragments in Plasma of Patients With Ischemic and Hemorrhaging Strokes
Objective: To evaluate low-molecular-weight (LMW) DNA as possible prognostic biomarker in acute ischemic and hemorrhagic stroke. Methods: LMW DNA samples were isolated from plasma and cerebrospinal fluid by phenol deproteinization, analyzed by gradient polyacrylamide electrophoresis and quantified by spectrophotometry. Results: Two common types of the stroke, ischemic and hemorrhagic, differ...
متن کامل